Application Note
As published in “The Handbook of Analytical Methods for Dietary Supplements”

0053 - Guggul for Guggulsterones by HPLC

Botanical Name: Commiphora mukul; Balsamodendron mukul; Commiphora wightii

Common Names: Bdellium tree, false myrrh, guggulu

Parts of Plant Used: Gum resin

Uses: Treatment of hyperlipidemia, reduction of lipid and cholesterol levels

Modes of Action:
Several clinical trials have established the activity of guggul\(^1,2\) and guggulsterones were found to be the bioactive components.\(^3\) Guggulsterones were found to be an antagonist of the farnesoid X receptor and an antagonist of the bile acid receptor, to decrease expression of bile-acid-activated genes, and to be a farnesoid X receptor antagonist in coactivator association assays but guggulsterones act to enhance transcription of the bile salt export pump.\(^4-6\)

Chemical Markers:
Guggul resin is a complex mixture of various types of compounds including sterols, diterpenes, triterpenes, lignans, lipids, aliphatic esters, and ferulates.\(^7-13\) The Z-guggulsterone and E-guggulsterone were found to be the bioactive components responsible for the lipid- and cholesterol-lowering activities. Other sterols purified from the gum include guggulsterols I, II, III, IV, V, and VI. The essential oil of guggul gum resin was found to include α-pinene, myrcene, cadinene, geraniol, methylheptanone, and eugenol.\(^14\) E- and Z-Guggulsterones are used as marker compounds for quality control of guggul gum and gum extracts.
Methods of Analysis
Several HPLC methods have been developed to determine E- and Z-guggulsterones; an LC–MS method also was reported that could identify the chemical components of guggul.

E- and Z-Guggulsterones can be extracted by organic solvents such as ethyl acetate and methanol. The E- and Z-guggulsterones also can be extracted from a guggul extract with 60% acetonitrile.

Method 1:
The method of Mesrob et al. was used.15

Sample Preparation:
Accurately weigh 25 to 30 mg of the resinous extract; dissolve in 2 mL of ethyl acetate, and then dilute to 10 mL with methanol for HPLC analysis.

Chromatography:
Column: Alltech Adsorbosphere HS-C18, 5 µm, 150 × 4.6 mm.
Mobile phase: Solvent A = water, solvent B = acetonitrile.
Gradient:

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>%A</th>
<th>%B</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>64</td>
<td>36</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>64</td>
<td>36</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>45</td>
<td>6</td>
</tr>
<tr>
<td>56</td>
<td>55</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>64</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>76</td>
<td>64</td>
<td>36</td>
<td>-</td>
</tr>
</tbody>
</table>

Flow rate: 1.2 mL/minute
Injection volume: 20 µL
Detection wavelength: 245 nm

Validation Data:
Linearity: For Z- and E-guggulsterones, 15 to 85 and 25 to 130 mcg/mL, respectively, with a correlation coefficient over 0.992.
Accuracy: The percent recoveries were from 100 to 103.9 for Z- and E-guggulsterones with two different HPLC systems.
Precision: Not specified
Selectivity: Peak identification was determined against standards.
Robustness: Not specified
LOD/LOQ: Not specified
Method 2:
The method of Nagarajan et al. was used.16

Sample Preparation:
Sonicate sample equivalent to 3.0 mg of E- and Z-guggulsterones with acetonitrile in a 50-mL volumetric flask for 30 minutes.

Chromatography:
Column: Waters Symmetry C18, 4 μm, 150 \times 3.9 mm, with a Sentry C18 guard column, 4 μm, 20 \times 3.9 mm.
Mobile phase: Solvent A = water, solvent B = acetonitrile; A:B = 54:46.
Flow rate: 1.0 mL/minute
Injection volume: 20 μL
Column temperature: 25°C
Detection wavelength: 242 nm

Validation Data:
Linearity: For both compounds, 0.01 to 0.2 mg/mL with a correlation coefficient over 0.999.
Accuracy: The percent recoveries were 98.7, 99.0, and 97.7 with 50%, 100%, and 150% spiking levels, respectively.
Precision: RSD is less than 2.3%.
Ruggedness: Not specified
Robustness: Not specified
Selectivity: Peak identification was determined against standards.
LOD/LOQ: LOD = 0.005 mg/mL, LOQ = 0.014 mg/mL

Method 3:
The Chromadex method was used; it can be found at www.chromadex.com.

Sample Preparation:
Extract about 350 mg of guggul extract with 50 mL of 60% acetonitrile in a 100-mL volumetric flask. First shake the sample for 15 minutes and then sonicate for 15 minutes. Cool to room temperature and fill to volume with 60% acetonitrile.

Chromatography:
Column: Phenomenex Luna C18 (2), 5 μm, 4.6 \times 150 mm.
Mobile phase: Solvent A = water–acetonitrile–85% phosphoric acid (50:50:0.1), solvent B = water–acetonitrile–85% phosphoric acid (25:75:0.1).
Gradient:

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL/minute
Injection volume: 20 μL
Detection wavelength: 241 nm
Column temperature: 25°C
Representative HPLC Chromatogram of Guggul Run by Method 3.

References:

